

Tetrahedron Letters

Tetrahedron Letters 46 (2005) 1725-1726

Microwave-assisted synthesis of 1-aryl-3-acetyl-1,4,5,6-tetrahydrobenzimidazo[1,2-d][1,2,4]triazine: first example of a novel ring system

Raid J. Abdel-Jalil, a,* Wolfgang Voelter^b and Raphael Stoll^c

^aChemistry Department, Faculty of Science, Hashemite University, Zarka, Jordan

^bAbteilung für Physikalishe Biochemie des Physiologish-chemischen Instituts der Universität Tübingen,

Hoppe-Seyler Strasse 4, D-72076 Tübingen, Germany

^cBiomolekulare NMR, Fakultaet fuer Chemie, Ruhr-Universitaet Bochum, NC 4/72, Universitaetsstrasse 150,

D-44780 Bochum, Germany

Received 3 August 2004; revised 10 January 2005; accepted 11 January 2005 Available online 28 January 2005

Abstract—Novel highly functionalized benzimidazoles were synthesized in two steps by microwave irradiation: construction of the benzimidazole ring followed by ring closure to the new tricyclic system.

© 2005 Elsevier Ltd. All rights reserved.

Microwave-assisted organic syntheses often result in dramatic increases in yields of chemical transformations. Furthermore, microwave-assisted reactions under solvent-less conditions provide access to work with open vessels and to scale up reactions. ⁶

Various benzimidazole derivatives are of interest for their diverse pharmaceutical uses⁷ and they play a vital role in the synthesis of fused heterocyclic systems.⁸ Recently, we have demonstrated that the nitrile imines 2 display electrophilic and nucleophilic reactivity which upon reaction with 4-deoxy-4-amino-2,3-anhydropyranosides afforded the corresponding chiral triazines fused to pyranose sugars.⁹ Extending the potentials of these nitrile imines, we planned to exploit the reaction with 2-chloromethylbenzimidazole (3).

Chloromethyl-1*H*-benzimidazole (3)was prepared from *o*-phenylenediamine according to Ref. 10. The 1,3-dipole-like nitrile imines **2a**–**g** were generated in situ from the reaction of triethylamine with the hydrazonyl chlo-

rides 1a-g.¹¹ Treatment of 3 with the nitrile imines 2a-g using microwave irradiation was explored under solvent-free conditions using silica gel as a solid support. The reactants were impregnated on the support and then irradiated at 900 W for 4 min using a domestic microwave apparatus (Frigidaire/China) to give the new tricyclic benzimidazole derivatives 4a-g in 81-88% yields (Scheme 1).

The highest yield was achieved by irradiating the reactants for 4 min (Table 1). Extending the heating time results in a dramatic decrease of the yield (Table 1, entries 1–5). For comparison, a classical method for the preparation of the new benzimidazoles was also investigated by refluxing 3 with the nitrile imine 2a in ethanol or DMF for 6 h. It was very obvious that the classical approach for the synthesis of this novel system is a tedious method affording a low yield of 4a (26–32%) in addition to other by products, difficult to separate. Compounds 4b–g were synthesized under the same conditions (Table 1: entries 6–11).

For **4a**: 2-chloromethylbenzimidazole (**3**; 2.4 mmol), hydrazonyl chloride (**1a**; 2 mmol), triethylamine (8 mmol) and silica gel (1 g) were mixed and introduced in an open Erlenmeyer flask. The reaction mixture was irradiated in a domestic microwave oven for 4 min (the temperature inside 220–250 °C). After cooling to room temperature, methanol was added (30 mL) and the

Keywords: Microwave-assisted synthesis; Triazines; Benzimidazoles. *Corresponding author. At present address: Abteilung für Physikalishe Biochemie des Physiologish-chemischen Instituts der Universität Tübingen, Hoppe-Seyler Strasse 4, D-72076 Tübingen, Germany. Tel.: +962 5 382 6600; fax: +962 5 382 6613/+49 7071 293348; e-mail addresses: jalil@hu.edu.jo; wolfgang.voelter@uni-tuebingen.de

Scheme 1.

Table 1. Reaction conditions and yields of 4a-e

Entry	Product	Conditions	Yield (%)
1	4a	SiO ₂ (1 g), TEA (4 equiv), 1a (1 equiv), 3 (1.2 equiv), 2 min	52 ± 2
2	4a	SiO ₂ (1 g), TEA (4 equiv), 1a (1 equiv), 3 (1.2 equiv), 4 min	79 ± 2
3	4a	SiO ₂ (5 g), TEA (4 equiv), 1a (1 equiv), 3 (1.2 equiv), 4 min	85 ± 2
4	4a	SiO ₂ (5 g), TEA (4 equiv), 1a (1 equiv), 3 (1.2 equiv), 6 min	63 ± 2
5	4a	SiO ₂ (5 g), TEA (4 equiv), 1a (2 equiv), 3 (1.2 equiv), 4 min	81 ± 2
6	4 b	SiO ₂ (1 g), TEA (4 equiv), 1b (1 equiv), 3 (1.2 equiv), 4 min	88
7	4c	SiO ₂ (1 g), TEA (4 equiv), 1c (1 equiv), 3 (1.2 equiv), 4 min	84
8	4 d	SiO ₂ (1 g), TEA (4 equiv), 1d (1 equiv), 3 (1.2 equiv), 4 min	82
9	4e	SiO ₂ (1 g), TEA (4 equiv), 1e (1 equiv), 3 (1.2 equiv), 4 min	82
10	4 f	SiO ₂ (1 g), TEA (4 equiv), 1f (1 equiv), 3 (1.2 equiv), 4 min	84
11	4g	SiO ₂ (1 g), TEA (4 equiv), 1g (1 equiv), 3 (1.2 equiv), 4 min	80

reaction mixture filtered. The filtrate was evaporated to dryness and subjected to column chromatography (10% hexane/dichloromethane) to afford **4a** in 85% yield. The ¹³C NMR¹² spectra exhibit a quaternary carbon resonance at about 152 ppm, indicative for the imine bond (C=N). C-6 and C-11 resonate at 44–45 and 25–26 ppm, respectively, and the carbonyl signals arise at 190–193 ppm. The ¹H NMR spectra show methylene signals at 5.0–5.2 ppm and methyl resonances at 2.72–2.74 ppm. ¹³

In summary, the synthesis of the new tricyclic benzimidazole system have been accomplished under solvent-free microwave irradiation. The new benzimidazole derivatives with potential biological activities are under active investigations.

Acknowledgements

Financial support provided by the Hashemite University, is greatly acknowledged. We express our gratitude to Internationales Büro of BMBF, Jülich, for a fellowship granted to Dr. R.J.A.J.

References and notes

1. Larhed, M.; Moberg, C.; Hallberg, A. Acc. Chem. Res. **2002**, *35*, 717–727.

- 2. Caddick, S. Tetrahedron 1995, 51, 10403–104032.
- 3. Gabriel, C.; Gabriel, S.; Grant, H.; Halsstead, B. S. J.; Mingos, D. M. P. Chem. Soc. Rev. 1998, 27, 213–224.
- Strauss, C. R.; Trainor, R. W. Aust. J. Chem. 1995, 48, 1665–1692.
- 5. Kaiser, N.-F. K.; Bremberg, U.; Larhed, M.; Moberg, C.; Hallberg, A. J. Organomet. Chem. 2000, 603, 2–5.
- Varma, R. S.; Dahiya, R. Tetrahedron 1998, 54, 6293–6298.
- (a) Zou, R.; Ayres, K. R.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1996, 39, 3477–3482; (b) Labanauskas, L.; Brukstus, A.; Undrenaite, E.; Gaidelis, P.; Bucinskaite, V.; Dauksas, V. Pharmazie 2000, 429–431.
- Brukstus, A.; Melamedaite, D.; Tumkevicius, S. Synth. Commun. 2000, 30, 3719–3730.
- Saeed, M.; Abdel-Jalil, R. J.; Voelter, W.; El-Abadelah, M. M. Chem. Lett. 2001, 660–661.
- Njoya, Y.; Boufatah, N.; Gellis, A.; Rathelot, P.; Crozet, M. P.; Vanelle, P. *Heterocycles* 2002, 57, 1423–1432.
- El-Abadelah, M. M.; Hussein, A. Q.; Thaher, B. A. Heterocycles 1991, 32, 1879–1888.
- Breitmaier, E.; Voelter, W. In Carbon-13 NMR Spectroscopy. High-Resolution Methods and Applications in Organic Chemistry and Biochemistry; VCH Verlagsgesellschaft: Weinheim, Fed. Rep. Germany, 1987.
- 13. Selected data for compound **4a**: white prisms, mp 155–156 °C (ethanol); EI-MS: *m/z* 290; ¹H NMR(400 MHz, CDCl₃) δ: 2.72 (s, 3H, COC*H*₃), 5.09 (s, 2H, N*CH*₂), 7.16–7.80 (m, 9H, phenyl, *H-7*, *H-8*, *H-9*, *H-10*); ¹³C NMR (400 MHz, CDCl₃) δ: 25.9 (C-11), 44.8 (C-6), 151.2 (C=N), 115.2, 115.9, 119.8, 124.1, 124.2, 124.3, 129.6, 144.7, 144. 8, 144.9 (phenyl, C-7, C-8, C-9, C-10), 189.9 (C=O).